© Copyright Excosoft. Powered by Skribenta CCMS® and Topic Finder CDP®

Find and navigate

Filters


Add/remove/view favorites


Table of contents

File properties

Examples of TeX formulas

The easiest way to create a formula is to copy from the examples below and edit to suit your needs.

You can also look on the TeX syntax examples on Wikipedia.

Subscript and superscript of a single character

x^2

x_2

2^x

x^2y^2

x_2y_2

_2F_3

Subscript and superscript at several levels and of multiple characters

x^{2y}

2^{2^x}

2^{2^{2^x}}

y_{x_2}

y_{x^2}

((x^2)^3)^4

{({(x^2)}^3)}^4

Both subscript and superscript

x^2_3

x_3^2

x^{31415}_{92}+\pi

P_2^2

P{}_2^2

Reserved word \prime

y_1^\prime

y_2^{\prime\prime}

y_3^{\prime\prime\prime}

f'[g(x)]g'(x)

y_1'+y_2''

y'_1+y''_2

Reserved word \sqrt, \underline and \overline

Table 5: Table with examples

\sqrt 2

\sqrt {x+2}

\underline 4

\overline {x+y}

\overline x+\overline y

x^{\underline n}

x^{\overline {m+n}}

\sqrt{x^3+\sqrt\alpha}

\root 3 \of 2

\root n \of {x^n+y^n}

\root n+1 \of a

Fractions

x+y^2\over k+1

{x+y^2\over k}+1

x+{y^2\over k}+1

x+{y^2\over k+1}

x+y^{2\over k+1}

{a\over b}\over 2

a\over {b\over 2}

a/b \over 2

a \over b/2

x\atop y+2

n\choose k

Sum and Integral

\sum_{n=1}^m

\int_{- \infty}^{+ \infty}

\int\limits_0^1

\sum\nolimits_{n=1}^m

Common Mathematical Functions

\arccos

\arcsin

\arctan

\arg

\cos

\cosh

\cot

\coth

\csc

\deg

\det

\dim

\exp

\gcd

\hom

\inf

\ker

\lg

\lim

\liminf

\limsup

\ln

\log

\max

\min

\Pr

\sec

\sin

\sinh

\sup

\tan

\tanh

\sin2\theta=2\sin\theta\cos\theta

O(n\log n\log\log n)

\Pr(X>x)=\exp(-x/\mu)

\max_{1\le n\le m}\log_2P_n

\lim_{x\to 0}{\sin x\over x}=1

Text Style or Display Style

Standalone and inline formulas are rendered differently. This is clearly visible in the integral in this line: and the standalone integral on the next line.

The rendition can be controlled explicitly using the textstyle attribute: textstyle="Display" (standalone) or textstyle="inline" (inline).

It is also possible to use reserved words in the formula itself:

\textstyle\sum_{n=1}^m

\displaystyle\sum_{n=1}^m

despite that we are inside a paragraph

n + \scriptstyle n + \scriptscriptstyle n

Spaces

\quad

\qquad

double quad

\,

thin space (1/6 quad)

\>

medium space (2/9 quad)

\;

thick space (5/18 quad)

\!

negative thin space (-1/6 quad)

F_n=F_{n-1}+F_{n-2},\qquad n \ge 2.

\int_0^\infty f(x)\,dx

dx\,dy=r\,dr\,d\theta

y\,dx-x\,dy

Ellipses

x_1+\cdots+x_n

x_1=\cdots=x_n=0

A_1\times\cdots\times A_n

f(x_1, \ldots,x_n)

x_1x_2\ldots x_n

(1-x)(1-x^2)\ldots(1-x^n)

n(n-1)\ldots(1)

(x_1, \ldots, x_n) \cdot

(y_1, \ldots, y_n) =

x_1 y_1 + \cdots + x_n y_n

Reserved word \phantom

The \phantom reserved word creates an invisible box whose width, height and depth are the same as the formula itself. The \vphantom reserved word creates a box with no width but with the same height and depth as the subformula. The \hphantom reserved word creates a box with the same width as a normal box but with no height or depth. The \mathstrut macro is defined as "\vphantom(".

\sqrt a+\sqrt d+\sqrt y

\sqrt {\mathstrut a} +

\sqrt {\mathstrut d} +

\sqrt {\mathstrut y}

\sqrt 2+\sqrt\phantom 2

\sqrt 2+\sqrt{2\vphantom{1\over 2}}

\sqrt{\hphantom{1234}+2}

Greek letters

Table 28: Small letters

\alpha

\iota

\beta

\kappa

\sigma

\gamma

\lambda

\varsigma

\delta

\mu

\tau

\epsilon

\nu

\upsilon

\varepsilon

\xi

\phi

\zeta

o

\varphi

\eta

\pi

\chi

\theta

\varpi

\psi

\vartheta

\rho

\omega

Table 29: Capital letters

\Gamma

\Xi

\Phi

\Delta

\Pi

\Psi

\Theta

\Sigma

\Omega

\Lambda

\Upsilon

Complex examples

4\sqrt{x^2-1}=3+3x

16(x^2-1)=9+18x+9x^2

{11\choose3}={11!\over8!3!}=165

=\sqrt{(\sqrt5)^2-2\sqrt5\sqrt3+(\sqrt3)^2}

n_i={g_i\over e^{(\epsilon_i-\mu)/kT}-1}

\approx\prod_i{(n_i+g_i)!\over n_i!(g_i)!}

\sum^n_{k_1=0}\sum^{n-k_1}_{k_2=0}\ldots \sum^{n\!-\!\textstyle\sum^{g-1}_{j=1}k_j}_\phantom kw(n-\sum^g_{i=1}k_i,0)

10\>000 Å=1\>000nm=1\mu=1\mu m

W_{\lambda b}={2\pi hc^2\over\lambda^5(e^{hc/\lambda kT}-1)}\times 10^{-6}[Watt/m^2,\mu m]

\lambda_{max}={2898\over T}[\mu m]

W_b = \sigma T^4 [Watt/m^2]

\alpha_\lambda+\rho_\lambda+\tau_\lambda=1

L_{10m} = {1\over{{U_1\over L_{10m1}} + {U_2\over L_{10m2}} + {U_3\over L_{10m3}} + \ldots}}